You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

549 lines
21 KiB

/**
* Compute a stride in bytes based on a list of attributes
* @param {Array<AttributeDescription>} attributes Ordered list of attributes
* @return {number} Stride, ie amount of values for each vertex in the vertex buffer
*/
export function computeAttributesStride(attributes: Array<AttributeDescription>): number;
/**
* Shader types, either `FRAGMENT_SHADER` or `VERTEX_SHADER`.
*/
export type ShaderType = number;
export namespace ShaderType {
const FRAGMENT_SHADER: number;
const VERTEX_SHADER: number;
}
/**
* Names of uniforms made available to all shaders.
* Please note: changing these *will* break custom shaders!
*/
export type DefaultUniform = string;
export namespace DefaultUniform {
const PROJECTION_MATRIX: string;
const OFFSET_SCALE_MATRIX: string;
const OFFSET_ROTATION_MATRIX: string;
const TIME: string;
const ZOOM: string;
const RESOLUTION: string;
const SIZE_PX: string;
const PIXEL_RATIO: string;
}
/**
* Attribute types, either `UNSIGNED_BYTE`, `UNSIGNED_SHORT`, `UNSIGNED_INT` or `FLOAT`
* Note: an attribute stored in a `Float32Array` should be of type `FLOAT`.
*/
export type AttributeType = number;
export namespace AttributeType {
export { UNSIGNED_BYTE };
export { UNSIGNED_SHORT };
export { UNSIGNED_INT };
export { FLOAT };
}
export default WebGLHelper;
export type BufferCacheEntry = {
/**
* Buffer.
*/
buffer: import("./Buffer.js").default;
/**
* WebGlBuffer.
*/
webGlBuffer: WebGLBuffer;
};
/**
* Description of an attribute in a buffer
*/
export type AttributeDescription = {
/**
* Attribute name to use in shaders
*/
name: string;
/**
* Number of components per attributes
*/
size: number;
/**
* Attribute type, i.e. number of bytes used to store the value. This is
* determined by the class of typed array which the buffer uses (eg. `Float32Array` for a `FLOAT` attribute).
* Default is `FLOAT`.
*/
type?: number | undefined;
};
export type UniformLiteralValue = number | Array<number> | HTMLCanvasElement | HTMLImageElement | ImageData | import("../transform").Transform;
/**
* Uniform value can be a number, array of numbers (2 to 4), canvas element or a callback returning
* one of the previous types.
*/
export type UniformValue = UniformLiteralValue | ((arg0: import("../Map.js").FrameState) => UniformLiteralValue);
export type PostProcessesOptions = {
/**
* Scale ratio; if < 1, the post process will render to a texture smaller than
* the main canvas which will then be sampled up (useful for saving resource on blur steps).
*/
scaleRatio?: number | undefined;
/**
* Vertex shader source
*/
vertexShader?: string | undefined;
/**
* Fragment shader source
*/
fragmentShader?: string | undefined;
/**
* Uniform definitions for the post process step
*/
uniforms?: {
[x: string]: UniformValue;
} | undefined;
};
export type Options = {
/**
* Uniform definitions; property names must match the uniform
* names in the provided or default shaders.
*/
uniforms?: {
[x: string]: UniformValue;
} | undefined;
/**
* Post-processes definitions
*/
postProcesses?: PostProcessesOptions[] | undefined;
/**
* The cache key for the canvas.
*/
canvasCacheKey?: string | undefined;
};
export type UniformInternalDescription = {
/**
* Name
*/
name: string;
/**
* Value
*/
value?: UniformValue | undefined;
/**
* Texture
*/
texture?: WebGLTexture | undefined;
};
export type CanvasCacheItem = {
/**
* Canvas element.
*/
canvas: HTMLCanvasElement;
/**
* The count of users of this canvas.
*/
users: number;
};
import { UNSIGNED_BYTE } from "../webgl.js";
import { UNSIGNED_SHORT } from "../webgl.js";
import { UNSIGNED_INT } from "../webgl.js";
import { FLOAT } from "../webgl.js";
/**
* @classdesc
* This class is intended to provide low-level functions related to WebGL rendering, so that accessing
* directly the WebGL API should not be required anymore.
*
* Several operations are handled by the `WebGLHelper` class:
*
* ### Define custom shaders and uniforms
*
* *Shaders* are low-level programs executed on the GPU and written in GLSL. There are two types of shaders:
*
* Vertex shaders are used to manipulate the position and attribute of *vertices* of rendered primitives (ie. corners of a square).
* Outputs are:
*
* * `gl_Position`: position of the vertex in screen space
*
* * Varyings usually prefixed with `v_` are passed on to the fragment shader
*
* Fragment shaders are used to control the actual color of the pixels drawn on screen. Their only output is `gl_FragColor`.
*
* Both shaders can take *uniforms* or *attributes* as input. Attributes are explained later. Uniforms are common, read-only values that
* can be changed at every frame and can be of type float, arrays of float or images.
*
* Shaders must be compiled and assembled into a program like so:
* ```js
* // here we simply create two shaders and assemble them in a program which is then used
* // for subsequent rendering calls; note how a frameState is required to set up a program,
* // as several default uniforms are computed from it (projection matrix, zoom level, etc.)
* const vertexShader = new WebGLVertex(VERTEX_SHADER);
* const fragmentShader = new WebGLFragment(FRAGMENT_SHADER);
* const program = this.context.getProgram(fragmentShader, vertexShader);
* helper.useProgram(this.program, frameState);
* ```
*
* Uniforms are defined using the `uniforms` option and can either be explicit values or callbacks taking the frame state as argument.
* You can also change their value along the way like so:
* ```js
* helper.setUniformFloatValue('u_value', valueAsNumber);
* ```
*
* ### Defining post processing passes
*
* *Post processing* describes the act of rendering primitives to a texture, and then rendering this texture to the final canvas
* while applying special effects in screen space.
* Typical uses are: blurring, color manipulation, depth of field, filtering...
*
* The `WebGLHelper` class offers the possibility to define post processes at creation time using the `postProcesses` option.
* A post process step accepts the following options:
*
* * `fragmentShader` and `vertexShader`: text literals in GLSL language that will be compiled and used in the post processing step.
* * `uniforms`: uniforms can be defined for the post processing steps just like for the main render.
* * `scaleRatio`: allows using an intermediate texture smaller or higher than the final canvas in the post processing step.
* This is typically used in blur steps to reduce the performance overhead by using an already downsampled texture as input.
*
* The {@link module:ol/webgl/PostProcessingPass~WebGLPostProcessingPass} class is used internally, refer to its documentation for more info.
*
* ### Binding WebGL buffers and flushing data into them
*
* Data that must be passed to the GPU has to be transferred using {@link module:ol/webgl/Buffer~WebGLArrayBuffer} objects.
* A buffer has to be created only once, but must be bound every time the buffer content will be used for rendering.
* This is done using {@link bindBuffer}.
* When the buffer's array content has changed, the new data has to be flushed to the GPU memory; this is done using
* {@link flushBufferData}. Note: this operation is expensive and should be done as infrequently as possible.
*
* When binding an array buffer, a `target` parameter must be given: it should be either {@link module:ol/webgl.ARRAY_BUFFER}
* (if the buffer contains vertices data) or {@link module:ol/webgl.ELEMENT_ARRAY_BUFFER} (if the buffer contains indices data).
*
* Examples below:
* ```js
* // at initialization phase
* const verticesBuffer = new WebGLArrayBuffer([], DYNAMIC_DRAW);
* const indicesBuffer = new WebGLArrayBuffer([], DYNAMIC_DRAW);
*
* // when array values have changed
* helper.flushBufferData(ARRAY_BUFFER, this.verticesBuffer);
* helper.flushBufferData(ELEMENT_ARRAY_BUFFER, this.indicesBuffer);
*
* // at rendering phase
* helper.bindBuffer(ARRAY_BUFFER, this.verticesBuffer);
* helper.bindBuffer(ELEMENT_ARRAY_BUFFER, this.indicesBuffer);
* ```
*
* ### Specifying attributes
*
* The GPU only receives the data as arrays of numbers. These numbers must be handled differently depending on what it describes (position, texture coordinate...).
* Attributes are used to specify these uses. Specify the attribute names with
* {@link module:ol/webgl/Helper~WebGLHelper#enableAttributes} (see code snippet below).
*
* Please note that you will have to specify the type and offset of the attributes in the data array. You can refer to the documentation of [WebGLRenderingContext.vertexAttribPointer](https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/vertexAttribPointer) for more explanation.
* ```js
* // here we indicate that the data array has the following structure:
* // [posX, posY, offsetX, offsetY, texCoordU, texCoordV, posX, posY, ...]
* helper.enableAttributes([
* {
* name: 'a_position',
* size: 2
* },
* {
* name: 'a_offset',
* size: 2
* },
* {
* name: 'a_texCoord',
* size: 2
* }
* ])
* ```
*
* ### Rendering primitives
*
* Once all the steps above have been achieved, rendering primitives to the screen is done using {@link prepareDraw}, {@link drawElements} and {@link finalizeDraw}.
* ```js
* // frame preparation step
* helper.prepareDraw(frameState);
*
* // call this for every data array that has to be rendered on screen
* helper.drawElements(0, this.indicesBuffer.getArray().length);
*
* // finalize the rendering by applying post processes
* helper.finalizeDraw(frameState);
* ```
*
* For an example usage of this class, refer to {@link module:ol/renderer/webgl/PointsLayer~WebGLPointsLayerRenderer}.
*/
declare class WebGLHelper extends Disposable {
/**
* @param {Options} [options] Options.
*/
constructor(options?: Options | undefined);
/** @private */
private boundHandleWebGLContextLost_;
/** @private */
private boundHandleWebGLContextRestored_;
/**
* @private
* @type {string}
*/
private canvasCacheKey_;
/**
* @private
* @type {HTMLCanvasElement}
*/
private canvas_;
/**
* @private
* @type {WebGLRenderingContext}
*/
private gl_;
/**
* @private
* @type {!Object<string, BufferCacheEntry>}
*/
private bufferCache_;
/**
* @private
* @type {Object<string, Object>}
*/
private extensionCache_;
/**
* @private
* @type {WebGLProgram}
*/
private currentProgram_;
/**
* @private
* @type {import("../transform.js").Transform}
*/
private offsetRotateMatrix_;
/**
* @private
* @type {import("../transform.js").Transform}
*/
private offsetScaleMatrix_;
/**
* @private
* @type {Array<number>}
*/
private tmpMat4_;
/**
* @private
* @type {Object<string, WebGLUniformLocation>}
*/
private uniformLocations_;
/**
* @private
* @type {Object<string, number>}
*/
private attribLocations_;
/**
* Holds info about custom uniforms used in the post processing pass.
* If the uniform is a texture, the WebGL Texture object will be stored here.
* @type {Array<UniformInternalDescription>}
* @private
*/
private uniforms_;
/**
* An array of PostProcessingPass objects is kept in this variable, built from the steps provided in the
* options. If no post process was given, a default one is used (so as not to have to make an exception to
* the frame buffer logic).
* @type {Array<WebGLPostProcessingPass>}
* @private
*/
private postProcessPasses_;
/**
* @type {string|null}
* @private
*/
private shaderCompileErrors_;
/**
* @type {number}
* @private
*/
private startTime_;
/**
* @param {Object<string, UniformValue>} uniforms Uniform definitions.
*/
setUniforms(uniforms: {
[x: string]: UniformValue;
}): void;
/**
* @param {string} canvasCacheKey The canvas cache key.
* @return {boolean} The provided key matches the one this helper was constructed with.
*/
canvasCacheKeyMatches(canvasCacheKey: string): boolean;
/**
* Get a WebGL extension. If the extension is not supported, null is returned.
* Extensions are cached after they are enabled for the first time.
* @param {string} name The extension name.
* @return {Object|null} The extension or null if not supported.
*/
getExtension(name: string): any | null;
/**
* Just bind the buffer if it's in the cache. Otherwise create
* the WebGL buffer, bind it, populate it, and add an entry to
* the cache.
* @param {import("./Buffer").default} buffer Buffer.
*/
bindBuffer(buffer: import("./Buffer").default): void;
/**
* Update the data contained in the buffer array; this is required for the
* new data to be rendered
* @param {import("./Buffer").default} buffer Buffer.
*/
flushBufferData(buffer: import("./Buffer").default): void;
/**
* @param {import("./Buffer.js").default} buf Buffer.
*/
deleteBuffer(buf: import("./Buffer.js").default): void;
/**
* Clear the buffer & set the viewport to draw.
* Post process passes will be initialized here, the first one being bound as a render target for
* subsequent draw calls.
* @param {import("../Map.js").FrameState} frameState current frame state
* @param {boolean} [disableAlphaBlend] If true, no alpha blending will happen.
*/
prepareDraw(frameState: import("../Map.js").FrameState, disableAlphaBlend?: boolean | undefined): void;
/**
* Clear the render target & bind it for future draw operations.
* This is similar to `prepareDraw`, only post processes will not be applied.
* Note: the whole viewport will be drawn to the render target, regardless of its size.
* @param {import("../Map.js").FrameState} frameState current frame state
* @param {import("./RenderTarget.js").default} renderTarget Render target to draw to
* @param {boolean} [disableAlphaBlend] If true, no alpha blending will happen.
*/
prepareDrawToRenderTarget(frameState: import("../Map.js").FrameState, renderTarget: import("./RenderTarget.js").default, disableAlphaBlend?: boolean | undefined): void;
/**
* Execute a draw call based on the currently bound program, texture, buffers, attributes.
* @param {number} start Start index.
* @param {number} end End index.
*/
drawElements(start: number, end: number): void;
/**
* Apply the successive post process passes which will eventually render to the actual canvas.
* @param {import("../Map.js").FrameState} frameState current frame state
* @param {function(WebGLRenderingContext, import("../Map.js").FrameState):void} [preCompose] Called before composing.
* @param {function(WebGLRenderingContext, import("../Map.js").FrameState):void} [postCompose] Called before composing.
*/
finalizeDraw(frameState: import("../Map.js").FrameState, preCompose?: ((arg0: WebGLRenderingContext, arg1: import("../Map.js").FrameState) => void) | undefined, postCompose?: ((arg0: WebGLRenderingContext, arg1: import("../Map.js").FrameState) => void) | undefined): void;
/**
* @return {HTMLCanvasElement} Canvas.
*/
getCanvas(): HTMLCanvasElement;
/**
* Get the WebGL rendering context
* @return {WebGLRenderingContext} The rendering context.
*/
getGL(): WebGLRenderingContext;
/**
* Sets the default matrix uniforms for a given frame state. This is called internally in `prepareDraw`.
* @param {import("../Map.js").FrameState} frameState Frame state.
*/
applyFrameState(frameState: import("../Map.js").FrameState): void;
/**
* Sets the custom uniforms based on what was given in the constructor. This is called internally in `prepareDraw`.
* @param {import("../Map.js").FrameState} frameState Frame state.
*/
applyUniforms(frameState: import("../Map.js").FrameState): void;
/**
* Set up a program for use. The program will be set as the current one. Then, the uniforms used
* in the program will be set based on the current frame state and the helper configuration.
* @param {WebGLProgram} program Program.
* @param {import("../Map.js").FrameState} frameState Frame state.
*/
useProgram(program: WebGLProgram, frameState: import("../Map.js").FrameState): void;
/**
* Will attempt to compile a vertex or fragment shader based on source
* On error, the shader will be returned but
* `gl.getShaderParameter(shader, gl.COMPILE_STATUS)` will return `true`
* Use `gl.getShaderInfoLog(shader)` to have details
* @param {string} source Shader source
* @param {ShaderType} type VERTEX_SHADER or FRAGMENT_SHADER
* @return {WebGLShader} Shader object
*/
compileShader(source: string, type: ShaderType): WebGLShader;
/**
* Create a program for a vertex and fragment shader. Throws if shader compilation fails.
* @param {string} fragmentShaderSource Fragment shader source.
* @param {string} vertexShaderSource Vertex shader source.
* @return {WebGLProgram} Program
*/
getProgram(fragmentShaderSource: string, vertexShaderSource: string): WebGLProgram;
/**
* Will get the location from the shader or the cache
* @param {string} name Uniform name
* @return {WebGLUniformLocation} uniformLocation
*/
getUniformLocation(name: string): WebGLUniformLocation;
/**
* Will get the location from the shader or the cache
* @param {string} name Attribute name
* @return {number} attribLocation
*/
getAttributeLocation(name: string): number;
/**
* Modifies the given transform to apply the rotation/translation/scaling of the given frame state.
* The resulting transform can be used to convert world space coordinates to view coordinates.
* @param {import("../Map.js").FrameState} frameState Frame state.
* @param {import("../transform").Transform} transform Transform to update.
* @return {import("../transform").Transform} The updated transform object.
*/
makeProjectionTransform(frameState: import("../Map.js").FrameState, transform: import("../transform").Transform): import("../transform").Transform;
/**
* Give a value for a standard float uniform
* @param {string} uniform Uniform name
* @param {number} value Value
*/
setUniformFloatValue(uniform: string, value: number): void;
/**
* Give a value for a vec2 uniform
* @param {string} uniform Uniform name
* @param {Array<number>} value Array of length 4.
*/
setUniformFloatVec2(uniform: string, value: Array<number>): void;
/**
* Give a value for a vec4 uniform
* @param {string} uniform Uniform name
* @param {Array<number>} value Array of length 4.
*/
setUniformFloatVec4(uniform: string, value: Array<number>): void;
/**
* Give a value for a standard matrix4 uniform
* @param {string} uniform Uniform name
* @param {Array<number>} value Matrix value
*/
setUniformMatrixValue(uniform: string, value: Array<number>): void;
/**
* Will set the currently bound buffer to an attribute of the shader program. Used by `#enableAttributes`
* internally.
* @param {string} attribName Attribute name
* @param {number} size Number of components per attributes
* @param {number} type UNSIGNED_INT, UNSIGNED_BYTE, UNSIGNED_SHORT or FLOAT
* @param {number} stride Stride in bytes (0 means attribs are packed)
* @param {number} offset Offset in bytes
* @private
*/
private enableAttributeArray_;
/**
* Will enable the following attributes to be read from the currently bound buffer,
* i.e. tell the GPU where to read the different attributes in the buffer. An error in the
* size/type/order of attributes will most likely break the rendering and throw a WebGL exception.
* @param {Array<AttributeDescription>} attributes Ordered list of attributes to read from the buffer
*/
enableAttributes(attributes: Array<AttributeDescription>): void;
/**
* WebGL context was lost
* @private
*/
private handleWebGLContextLost;
/**
* WebGL context was restored
* @private
*/
private handleWebGLContextRestored;
/**
* Will create or reuse a given webgl texture and apply the given size. If no image data
* specified, the texture will be empty, otherwise image data will be used and the `size`
* parameter will be ignored.
* Note: wrap parameters are set to clamp to edge, min filter is set to linear.
* @param {Array<number>} size Expected size of the texture
* @param {ImageData|HTMLImageElement|HTMLCanvasElement} [data] Image data/object to bind to the texture
* @param {WebGLTexture} [texture] Existing texture to reuse
* @return {WebGLTexture} The generated texture
*/
createTexture(size: Array<number>, data?: HTMLCanvasElement | HTMLImageElement | ImageData | undefined, texture?: WebGLTexture | undefined): WebGLTexture;
}
import Disposable from "../Disposable.js";
//# sourceMappingURL=Helper.d.ts.map